SOLUTION OF THE INVERSE PROBLEM OF THERMAL
CONDUCTIVITY FOR A MELTING SLAB WITH ENTRAINMENT

V. I. Antipov and V. V. Lebedev UDC 536.2

This article proposes an approximate solution to the inverse problem of the Stefan type for
a finite region with arbitrary boundary and initial conditions. A comparison with exact solu-
tions is made.

The inverse problem of thermal conductivity for a region with a movable boundary consists in finding
the law governing the motion of the boundary of a melting solid s(7) and of the heat fluxes q,(7) and q,(7) on
the basis of a known change in the temperature at two external points, x; and x,, of the slab, t,(x, 7) and
ty(x, 7). We shall assume that these temperatures are measured experimentally without systematic errors,
There is no general method for solving problems of this type., Work is known {1, 2].in which the inverse
problem of thermal conductivity is solved with a given law of motion of the phase interface. In practice,
we are forced to face the necessity of solving the inverse problem of thermal conductivity with an unknown
law of motion of the interface,

In the present article an inverse problem of the Stefan type is solved for a finite region with arbitrary
boundary and initial conditions using the method of successive intervals [3]. The temperature t(x, 7) at any
arbitrary point of the slab satisfies the equation of thermal conductivity

T LAY pcrgan) (1)
with the bhoundary conditions
A 8t (s, ©)/0x = ¢, (v) + pL dsidr (2)
AOL(0, 1)/0z = g, (1) (3)
s, 1) =T 4)
s(ty) = R (5)

Here A and g are the coefficients of thermal conductivity and thermal diffusivity of the substance
of the slab; p is its density; T is the melting temperature; L is the specific heat of fusion or the effective
heat of fusion, taking account also of the heat of the chemical reactions, taking place at a constant tempera-~
ture T; R is the original thickness of the slab; q,(7) and q,(7) are the heat fluxes at the boundaries of the
region x=8(7) and x=0, respectively. I is assumed that the melt is removed instantaneously by mechani-
cal action.

If the initial-distribution of the temperature is approximated by a polynomial of the fourth order
£(z,0) = ¢ () = A4 + Bz/R + C (z/R)* + D (z/R)® + E (z/R)* (6)

the solution of the direct problem (1)-(6) can be represented in the form [3]

R

t(z, ©) =t (z, O)+BF(-%,m)—(B+ZC+3D+4E)F( }T.’w)+
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where A4 f4t and qif, j+1 are the values of the quasi-constant real and fictitious heat fluxes for the (i + 1)-th
s ,

interval of time, with stepwise approximation of the heat fluxes [3]; the functions F(y, w) and ®(y, w) were
found in [3] and have the form

oo

Fiy,0)=2Vo ]éo{ierfc ( ZkVTay ) + ferto| zw;;()?—-y i -

Dy, 0) =8} o ;20 {iserfc ( Zk;/}'_y) + i%rfc [ 2 (k;-Vi(l{_ y ]}

AF (y, nAw) = F (y, nAo) — F [y, (n — 1) Aol

(9)

Solving a system of two equations of the type of (7) for x=x, and x=x, with respect to Q1 N+1 and
9, N+ 1» We obtain

N-1
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If the surface x=0 is heat-insulated [q,(7) =0], the expression for Q( ) is simplified:
N—1

Q1,N4s = [AF (1 - & A(ﬂ)] { Aty [z, (N +1)A0]— X @y i1+1AF[ \ 1 y (VA1—1) Am]} (13)

i=0
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Relationships (10), (11) permit determining the unknown heat flux q,(w) from values of 9, N+ corre-
sponding to the mean point of the interval [NAw, (N= 1) A w], i.e., the point (N+1/2)A w.

To determine the law of change in the boundary of the melting solid, in relationship (7) we set x=R -
a- §N +1), where 1—& (w)/R=§ (w) is the relative depth of the melting. Taking account of condition (4),
we obtain

A+B@E—E )+ CU—E P+ D=5 PREQ =)+
4+ 2C(N+1)As+6D(N+ Aol — &y, )+ 12EWV + 1) Ao (1 —Ey )=
=T—BF{1 —&, ., (N+1)A0] + (B + 20+ 3D+ 4E) X
X F By (V+ 1) A0] —6DD[1 —&, ., (V+1)A0] +
+ (6D + 24E)D (&, ., (N +1) Am] —12E (N +1)? Aw? —
N
— 4 {20 Qi AF [y (V41— i) A] — Z Gy 10 AF[1 — §N+1, (N +1 — ) Ao]} (14)

Removing the brackets on the right-hand side of Eq. (14), replacing the terms gN 1 and g‘i\T 21 0¥

§§N s+ and §N 1 N and the arguments £ ;4 in the functions F, AF, and & on the left-hand side of (14)
by &N, We obtain a quadratic equation for £y 4,

(C + 3D + 8E -+ 12E (N + 1) Aw — Dt — 4EE, + E&, ¢ —
—[B+2C+3D +4E + 6 (N 1) Ao -+ 2E (N + 1) Ao} &y | —
—{T—(A-B4C-- D+ E)—@3C+ 6D+ 12E) (N -+ 1) Ao —

—42E (N +1)? Aw® — BF [1 — &, (N + 1) Ao] + (B + 2C + 3D + 4E) %
% F &y, (N + 1) Ao] — 8DFIL — Ey, (N -+ 1) AT -
N

+ (6D + 2%E) D [Ey, (V+ 1) Ao] — - N Q, ., AF [E,, (V 41— i) Ao} +

i=0

+ _;l 2 gy 1 AF (1 — By, (N +1 — 1) Aa)]}=0
i=9

The heat flux q;(w) is determined using the Stefan condition (2):

g L L d
Gl@)=ritpot B 2 M B RU—y (15)

$

Differentiating expression (7) with respect to x, then substituting x=R(1— £) and replacing the deriva-
tive d§ /d w by the finite difference (§N+1—§N)/Aw, we obtain from (15)

Gy = BN D B 20—y )+ 3D — By
HAE(L—By, )P — BO( — &y, (V + 1) Ao] — (B + 2C 4 3D 4 4E) X
X B [Eyyy (V1) Ao) — BDB, [1 — &y, (N + 1) Ao —

— (6D + 24E) ¥, [Ey,,, (N + 1) A0] + 6D (N + 1) Ao +

N
+ 2%E(N + 1) Ao(t —E 0+ X 0 p A Gy, (V+1—)Ae] +
i=0
N
+ N0y AV — &y, (V +1—1)Aw) (16)
i=0

'&1 (y, OJ) = 4o kzzo {i?ercf (32]_5__'_‘;‘%) — i%rfc |:2 (]»2+ 1)6——- Yy ]}

B 0 = i {erfc (?71_*) —erfe [2 <k2+ Vic)_; - am

k=0 ©

To evaluate the accuracy of the method set forth above, we give a numerical example for which exact
solutions are also known.

The exact partial solution of the Sanders equation [4] has the form

g (0) =0
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t(z, @) = I (*R2? 4 20) (17
E(o) =1 ——Vi—-—2m ' (18)
AT (L
¢ (@) = ( = W =+2VT— 2 20)) (19)

In this case, the initial distribution of the temperature is equal to
t(x, 0)= Tx*R-2

ie., A=B=D=E=0, C=T,
On the basis of values of the temperature measured at the point x; =0.9 R, we can establish the law
of motion of the boundary (18) and the heat flux (19). In this case, in accordance with (12)

Aty (21, @) = 2TF (0.1; o)

Calculation of Qy, N+1 using (13) at x=s=R (1—§) gives Q, JN+1=22 T/ R, and from (14) we obtain
an equation for £ (w):

N
(1 — 8@ + 20 =1 + 2F [E (@), 0] —2 Q) AF [E(0), (V 4+ 1 — i) A (20)

i==Q

By the definition of AF
N1

N
D AF [E(0), (N 4+ 1 — 1) As] = D) AF [E(0), kAo] = F [E(0), 0] (21)
i=0 k=1
From (20) we obtain the equation
B (0) —28(0) + 20 =0

whose solution is {(w)=1—+V1—2w, which coincides with (18). From (16) we find an expression for the

heat flux

@ (0) = 5= j§+ﬁ3[1-§< N — 2L o2 ), ol +

+ 2L 2 AB[E(@), (V +1 — i) Al

=g
Transforming the sum in the last term, similarly to (21) we obtain

(o) =2 B+ Bt -t =T (o =+ 2V T 20)

which coincides with (19). Inthis case the inverse problem is considerably simplified due to the constant
npature of QN +1s which made it possible to carry out a summation using (21).

Another exact solution of the Sanders equation [4] has the form

E(o) =1— Y 1341612 (22)
—T e 1 1 0,85403x2R2
t@, 0) =T {1 — YV T—341612a ,F; (—5, LY m)} @3)

where ;F, (o; B; z) is a degenerate hypergeometric function.
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From condition (2) we obtain an expression for the heat flux

: _ T 170806 L.
g (@) = 2] (2.34909+mvm CT)

or, setting L/eT =10/3 (as in the numerical example of Sanders)

5.69
g (0) = 21 (2.34909 4 69353 )

V1= 3416120 (24)

In this case the initial distribution has the form

t(z, 0) = T [0.85403 o L OB = -]

and, consequently,
4=B=D=0, C=0.83403T, E = 0.12156T

If as starting information we take the temperatures (23) arising at the point x; =0.9R, then, using for-
mulas (14) and (16) we can find the depth of melting £(w) and qy(w). Figures 1 and 2 give the results of a
solution of the inverse problem withA w =0.005. The solid lines show exact solutions of (22) for £ (w) and
of (24) for g4 (w). The dotted lines show the functions ¢ and q;, obtained from (14) and (16), respectively,
Values of ¢ obtained by a shift of the argument by Aw/2 are plotted on Fig, 1 by the small circles.

It can be seen from Fig. 1 that the law for the shift of the boundary was correctly established. A
systematic shift of the curve by approximately 0.5-0.75 Aw is observed. This shift is due to the insufficient
accuracy of the iteration process [the replacement of £ ; by {yy in the right-hand side of (14)]. Some im-~
provement of the iteration process can be obtained by comparing the exact value of £y, not with the £y,
approximation but with 0.5(§ 44 +&nN)-

By a combination of the method of successive intervals and a continuation of solutions into the region
of constant dimensions, it has been found possible to solve a problem of the Stefan type for an arbitrary
initial distribution and variable boundary conditions of the second kind. A Stefan problem with variable
boundary conditions of the first kind can be solved analogously.

A solution of the type of (13) is a solution for the so-called incorrectly stated problem. It is stable
for positions of the boundary s(w) satisfying the condition

sp2R < Ao (25)

In the case of the presence of two fluxes Q; Ny and gy N4, the algorithm for the calculation is
stable with

Ao = min{(R — 2)*/2R?, z*/2R%} (26)

For the deepest points, when the selected interval Aw does not satisfy condition (26), the fluxes Q,i+1
and ¢, j +; can be determined using the algorithm of E. M. Sparrow [5, 6] or the algorithm of A. N.
Tikhonov [7, 8].
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